3.125 \(\int \frac{\cos (c+d x)}{(a \cos (c+d x)+b \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=83 \[ -\frac{b}{d \left (a^2+b^2\right ) (a \cos (c+d x)+b \sin (c+d x))}-\frac{a \tanh ^{-1}\left (\frac{b \cos (c+d x)-a \sin (c+d x)}{\sqrt{a^2+b^2}}\right )}{d \left (a^2+b^2\right )^{3/2}} \]

[Out]

-((a*ArcTanh[(b*Cos[c + d*x] - a*Sin[c + d*x])/Sqrt[a^2 + b^2]])/((a^2 + b^2)^(3/2)*d)) - b/((a^2 + b^2)*d*(a*
Cos[c + d*x] + b*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.0665358, antiderivative size = 83, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {3155, 3074, 206} \[ -\frac{b}{d \left (a^2+b^2\right ) (a \cos (c+d x)+b \sin (c+d x))}-\frac{a \tanh ^{-1}\left (\frac{b \cos (c+d x)-a \sin (c+d x)}{\sqrt{a^2+b^2}}\right )}{d \left (a^2+b^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]/(a*Cos[c + d*x] + b*Sin[c + d*x])^2,x]

[Out]

-((a*ArcTanh[(b*Cos[c + d*x] - a*Sin[c + d*x])/Sqrt[a^2 + b^2]])/((a^2 + b^2)^(3/2)*d)) - b/((a^2 + b^2)*d*(a*
Cos[c + d*x] + b*Sin[c + d*x]))

Rule 3155

Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.))/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(
x_)])^2, x_Symbol] :> Simp[(c*B + c*A*Cos[d + e*x] + (a*B - b*A)*Sin[d + e*x])/(e*(a^2 - b^2 - c^2)*(a + b*Cos
[d + e*x] + c*Sin[d + e*x])), x] + Dist[(a*A - b*B)/(a^2 - b^2 - c^2), Int[1/(a + b*Cos[d + e*x] + c*Sin[d + e
*x]), x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[a*A - b*B, 0]

Rule 3074

Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> -Dist[d^(-1), Subst[Int
[1/(a^2 + b^2 - x^2), x], x, b*Cos[c + d*x] - a*Sin[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2,
0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos (c+d x)}{(a \cos (c+d x)+b \sin (c+d x))^2} \, dx &=-\frac{b}{\left (a^2+b^2\right ) d (a \cos (c+d x)+b \sin (c+d x))}+\frac{a \int \frac{1}{a \cos (c+d x)+b \sin (c+d x)} \, dx}{a^2+b^2}\\ &=-\frac{b}{\left (a^2+b^2\right ) d (a \cos (c+d x)+b \sin (c+d x))}-\frac{a \operatorname{Subst}\left (\int \frac{1}{a^2+b^2-x^2} \, dx,x,b \cos (c+d x)-a \sin (c+d x)\right )}{\left (a^2+b^2\right ) d}\\ &=-\frac{a \tanh ^{-1}\left (\frac{b \cos (c+d x)-a \sin (c+d x)}{\sqrt{a^2+b^2}}\right )}{\left (a^2+b^2\right )^{3/2} d}-\frac{b}{\left (a^2+b^2\right ) d (a \cos (c+d x)+b \sin (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.213311, size = 79, normalized size = 0.95 \[ \frac{\frac{2 a \tanh ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )-b}{\sqrt{a^2+b^2}}\right )}{\left (a^2+b^2\right )^{3/2}}-\frac{b}{\left (a^2+b^2\right ) (a \cos (c+d x)+b \sin (c+d x))}}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]/(a*Cos[c + d*x] + b*Sin[c + d*x])^2,x]

[Out]

((2*a*ArcTanh[(-b + a*Tan[(c + d*x)/2])/Sqrt[a^2 + b^2]])/(a^2 + b^2)^(3/2) - b/((a^2 + b^2)*(a*Cos[c + d*x] +
 b*Sin[c + d*x])))/d

________________________________________________________________________________________

Maple [A]  time = 0.167, size = 118, normalized size = 1.4 \begin{align*}{\frac{1}{d} \left ( -2\,{\frac{1}{ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a-2\,\tan \left ( 1/2\,dx+c/2 \right ) b-a} \left ( -{\frac{{b}^{2}\tan \left ( 1/2\,dx+c/2 \right ) }{ \left ({a}^{2}+{b}^{2} \right ) a}}-{\frac{b}{{a}^{2}+{b}^{2}}} \right ) }+2\,{\frac{a}{ \left ({a}^{2}+{b}^{2} \right ) ^{3/2}}{\it Artanh} \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) -2\,b}{\sqrt{{a}^{2}+{b}^{2}}}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)/(a*cos(d*x+c)+b*sin(d*x+c))^2,x)

[Out]

1/d*(-2*(-b^2/(a^2+b^2)/a*tan(1/2*d*x+1/2*c)-b/(a^2+b^2))/(tan(1/2*d*x+1/2*c)^2*a-2*tan(1/2*d*x+1/2*c)*b-a)+2*
a/(a^2+b^2)^(3/2)*arctanh(1/2*(2*a*tan(1/2*d*x+1/2*c)-2*b)/(a^2+b^2)^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a*cos(d*x+c)+b*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 0.507247, size = 502, normalized size = 6.05 \begin{align*} -\frac{2 \, a^{2} b + 2 \, b^{3} -{\left (a^{2} \cos \left (d x + c\right ) + a b \sin \left (d x + c\right )\right )} \sqrt{a^{2} + b^{2}} \log \left (-\frac{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a^{2} - b^{2} + 2 \, \sqrt{a^{2} + b^{2}}{\left (b \cos \left (d x + c\right ) - a \sin \left (d x + c\right )\right )}}{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + b^{2}}\right )}{2 \,{\left ({\left (a^{5} + 2 \, a^{3} b^{2} + a b^{4}\right )} d \cos \left (d x + c\right ) +{\left (a^{4} b + 2 \, a^{2} b^{3} + b^{5}\right )} d \sin \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a*cos(d*x+c)+b*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/2*(2*a^2*b + 2*b^3 - (a^2*cos(d*x + c) + a*b*sin(d*x + c))*sqrt(a^2 + b^2)*log(-(2*a*b*cos(d*x + c)*sin(d*x
 + c) + (a^2 - b^2)*cos(d*x + c)^2 - 2*a^2 - b^2 + 2*sqrt(a^2 + b^2)*(b*cos(d*x + c) - a*sin(d*x + c)))/(2*a*b
*cos(d*x + c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 + b^2)))/((a^5 + 2*a^3*b^2 + a*b^4)*d*cos(d*x + c) + (
a^4*b + 2*a^2*b^3 + b^5)*d*sin(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a*cos(d*x+c)+b*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.26548, size = 186, normalized size = 2.24 \begin{align*} -\frac{\frac{a \log \left (\frac{{\left | 2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, b - 2 \, \sqrt{a^{2} + b^{2}} \right |}}{{\left | 2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, b + 2 \, \sqrt{a^{2} + b^{2}} \right |}}\right )}{{\left (a^{2} + b^{2}\right )}^{\frac{3}{2}}} - \frac{2 \,{\left (b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + a b\right )}}{{\left (a^{3} + a b^{2}\right )}{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 2 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - a\right )}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a*cos(d*x+c)+b*sin(d*x+c))^2,x, algorithm="giac")

[Out]

-(a*log(abs(2*a*tan(1/2*d*x + 1/2*c) - 2*b - 2*sqrt(a^2 + b^2))/abs(2*a*tan(1/2*d*x + 1/2*c) - 2*b + 2*sqrt(a^
2 + b^2)))/(a^2 + b^2)^(3/2) - 2*(b^2*tan(1/2*d*x + 1/2*c) + a*b)/((a^3 + a*b^2)*(a*tan(1/2*d*x + 1/2*c)^2 - 2
*b*tan(1/2*d*x + 1/2*c) - a)))/d